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Abstract:

The most popular and conventional methods of computing dispersion are usually limited

to unidimensional data sets. With the evolution of IoT devices, streaming data is being

generated by various sources. The velocity and volume of these types of data are

uncontrollable and thus require processing without exceeding the available storage

capacity. This establishes the need for one-pass algorithms that can be used to

compute variability of such data. This report discusses methods like incremental

covariance algorithm and Welford's online algorithm for computing variance in

time-varying data sets.

1. Introduction:

While the value of a central tendency gives us a single-point representative value of a

data set, dispersion or variation is essential in obtaining a complete sense of the data,

as it captures the variability of the data.

The focus of this report is to discuss the different measures of dispersion and find one

that gives the most optimal results for stream processing. Managing streaming data is

fundamentally different from managing other transactional data as the insights derived

are the most valuable shortly after their generation, it’s value diminishing with time.

Utilising batch processing, when it comes to streaming data, is not feasible as it would

require vast storage space. This process would also require the stream to stop at some

point or else result in an unnecessary buildup.



In this report, section 2 explores the existing methods of computing standard deviation

and variance of a data set and the challenges they pose. Section 3 discusses various

methods of dispersion for both unidimensional and multidimensional data, and some

streaming algorithms. Section 4 discusses the importance and application of streaming

algorithms in the real world, followed by Section 5 which where the effectiveness of

Welford’s algorithm versus the textbook one-pass algorithm is demonstrated by means

of simulations.

2. Literature Survey:

Data in streaming setting has the following features:

● The number of observations is unknown,

● Requires performing some stopping test after each sample,

● The number of observations is too large to allow storage and batch processing.

There are a variety of streaming algorithms that exist for the computation of mean and

variance of streaming data, based on the method of incremental computation. However,

since computation of  variance involves sums of squares, limitations like numerical

instability and arithmetic overflow caused by the algorithm, when dealing with large

values, is common.

The most straightforward method for computing the variance of a data set is the

standard two-pass algorithm[5],



where, the sample mean

The problems posed by the two-pass algorithms mainly occur when the data sample is

too large to be stored in the main memory or when the variance has to be calculated

dynamically while the data is being collected.

The definition of S is manipulated into the following form to avoid the above limitations.

This formula is referred to as the ‘textbook one-pass algorithm’. The computation in this

algorithm can result in being numerically unstable if the values of and

are very large. This results in some rounding error, in which case the

two-pass algorithm can also be unstable.

To overcome these drawbacks the ‘updating algorithm’ suggested by Youngs and

Cramer[3] and Welford’s online algorithms[4] can be used as alternative one-pass

algorithms. Both of these are more stable and return the variance as the sum of

non-negative values.
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D.H.D. West [2] suggested an incremental algorithm that supports mean and variance

computation for positive weighted samples, by replacing the simple counter with the

sum of weights of the incoming data.

Pébay et al [9] proposed formulae for incremental and pairwise update of the

covariance value, thus making it a possibility to use covariance matrices for the

computation of variance in streaming data.

3. Main:

The measures of dispersion differ in construction, properties and the situations in which

they are used. Unfortunately, the most popular and commonly used measures can be

used only for one dimensional data. Since most of the contemporary datasets tend to be

multivariate, this poses a hindrance.  The univariate dispersion measures may be

applied to multidimensional data, to each variable separately, but this way we lose

information on possible relations between variables.

3.1 Unidimensional measures of dispersion:

The measures of dispersion are called the Averages of Second Order and represent the

extent of the scattering of observations about the mean, in a particular distribution. The

measures can be categorised as Absolute Measure of Dispersion or Relative Measure

of Dispersion. These may be categorised as Absolute Measures or Relative Measures.



Absolute measures such as range, quartile deviations, mean and standard deviation

produces a value which  is in the same unit as the original data set, and the variability is

expressed using the average of the deviation of observations. It helps understand the

dispersion within the context of the current experiments and measurements. Range:

Out of these, the range and the quartile values do not take all the observations  into

consideration, and are thus not very reliable measures of dispersion. Since the

calculations use the extreme values of the distribution, these measures are also highly

prone to sampling fluctuations. The method of squaring the deviations in standard

deviation and variance overcomes the drawback faced by mean deviations for ignoring

the signs and taking the absolute value and is also least affected by the fluctuations in

the observations.

Using standard deviation and variance as measures of dispersion can be used to detect

skewness. They are used along with mean as the measure of central tendency in the

case of symmetric, numerical data.

However, these measures are inappropriate in the case of skewed data. In case of

ordinal or skewed numerical data, a measure such as the interquartile range is used

along with the median.

Relative Measures such as coefficient of range, coefficient of variation, coefficient of

mean deviation etc. produce the result in the form of a ratio or percentage, and thus, are
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dimensionless. They are useful in comparing separate data sets generated during

different experiments, since the units do not have any role in these calculations.

3.2 Covariance Matrix

While the variance is used to measure the variation of a single random variable

throughout different observations, the covariance value is used to express how much

two different random variables vary together. The covariance of two random

variables and is given by

where the number of samples is . The covariance of a random variable can be

also expressed as . This means that the value is the covariance of with itself.

The covariance matrix is a square matrix giving the covariance between each pair of

elements of a given random vector. Each entry of the matrix is where

, being the dimension or the number of features in the dataset. The main

diagonal of the matrix consists of the variances of each element, or the covariance .

This way, a data set of n-dimensional observations can be represented by a matrix of 2

numbers instead of a single real value of a desired measure of dispersion characterizing

somehow the whole multidimensional sample.
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3.3 Covariance Matrix in streaming data

The formula mentioned in Section 3.2 is a two pass algorithm which involve the
following steps:

1. Computation of the sample means

2. Computation of the covariances

This is not a feasible option while stream processing as the cost of distributed memory
access overshadows the computation costs.

As an alternative we can use the  one-pass online algorithm for calculating incremental
covariance matrix  which allows direct updates while being as numerically stable. These
one-pass algorithms are compatible with stream processing as the data does not need
to be stored.

1. The sample means can be updated as follows:

2. The co-moment is computed:
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3. Then finally, the covariance can be calculated as follows:

Pseudocode:
Input : Samples and
Output: Population Covariance and Sample Covariance

1. Mean_x :=0
2. Mean_y :=0
3. Moment := 0
4. Counter := 0
5. for each x, y in data1, data2:

a. Counter ++
b. dx = x - Mean_x
c. Mean_x =Mean_x + dx / Counter
d. Mean_y += (y - Mean_y) / Counter
e. Moment += dx * (y - Mean_y)

6. Population_covariance = Moment / Counter
7. Sample_covariance = Moment / (Counter - 1)

However, the size of a covariance matrix is equal to the square of the dimension of the

data set. This might cause problems for real data sets that have a very high number of

dimensions.

As a solution, one could compute a low rank factorization of the matrix, since the size of

a factor is only rank times the data and not data dimension squared. However, the

computation of low rank factorisation of a covariance matrix is a two-pass algorithm and

requires resetting of the data stream.

3.4 Welford's algorithm:

Wellford’s online algorithm is a stable method for the computation of variance in just a

single pass. This would prevent the need to store the data values as each value shall
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be inspected only once, making it an ideal algorithm for streaming data. The value can

be calculated by subtracting the sums of squared difference for samples from that of

samples.

The formula is used to update the variance of a distribution after taking into

consideration the additional, incoming element .

is the sample mean for the first samples.

The population variance,

could be written as

This could result in numerical instability due to the fact that a small number is repeatedly

subtracted from a large value which scales with . Thus, according to Welford’s

method, the sum squared of the differences from current mean is used for the process

of updation:

Updating

Thus the population variance :

Pseudocode:
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Input : Array of the sample [ , ,....., ]
Output : Incremental variance of the data stream.

1. Mean := 0
2. S:= 0
3. Counter:=0
4. for each x in sample:

a. Counter++
b. old_Mean := Mean
c. Mean := Mean + (x - Mean)/Counter
d. S := S + (x-Mean)*(x-old_Mean)

5. return S/N

4. Application:

Incremental computation of mean and variance of data streams are an essential step in

processing the data generated during network monitoring , intrusion detection, fraud

detection, financial monitoring and analysis of e-commerce websites. Due to the

constraints in storage space and computation power, streaming algorithms are used to

aggregate the incoming data points, thus maintaining summaries or a synopsis of the

nature of the time-varying data.
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5. Simulation

The following code is runs a simulation of the textbook one-pass algorithm on an array of data

def naive(samples):

S = 0

S2 = 0

c = 0

for x in samples:

S += x

S2 += x*x

c += 1

M = S/c

v = (S2 - (S*S)/c)/(c-1)

return M,v

The data stream is created using the random function. The range of the data varies from 0-100
and the array will consist of 20 points.

randomlist = []

for i in range(0,100):

n = random.randint(1,20)

randomlist.append(n)

runfile('C:/Users/Riona/untitled1.py', wdir='C:/Users/Riona')

Input:  [6, 15, 9, 12, 7, 11, 17, 7, 8, 7, 20, 19, 17, 4, 18,.......]

print("Textbook one-pass: ",naive(randomlist))

print("Numpy:   ", (np.mean(randomlist), np.var(randomlist)))

Textbook one-pass:  (11.34, 34.852929292929296)

Numpy: (11.34, 34.504400000000004)



The result obtained on running the naive algorithm on the data stream gives the same

mean as numpy’s np.mean() function. However, the variance obtained by the naive

algorithm differs from numpy’s at the first floating point. This is because the textbook

one-pass algorithm plays badly with floating point precision.

The next simulation will include taking data with a higher range and more elements in

the stream.

randomlist = []

for i in range(0,10000):

n = random.randint(1,9999)

randomlist.append(n)

On running the naive algorithm on this input, the variance significantly differs than the

one obtained by numpy.

Textbook one-pass:  (5020.0716, 8429625.482621703)

Numpy: (5020.0716, 8428782.52007344)

Now, the welford’s online algorithm is implemented to compare it’s precision with numpy.var()’s



def welford(samples):

c = 0

for x in samples:

c += 1

if c == 1:

M = x

S = 0

else:

M_next = M + (x - M) / c

S = S + (x - M)*(x - M_next)

M = M_next

v=S/(c-1)

return M,v

The results obtained have slightly more precision than the naive algorithm but are not

the same.

Welford: (5025.318999999975, 8276910.97313633)

Numpy: (5025.319, 8276083.282039)

numpy.var() has a ddof (Delta degrees of freedom) argument whose value is 0 by

default. On setting the ddof=1 , the var() function will use as the divisor,

rather than while calculating the variance.

Thus on making the following changes:

print("Welford:", welford(randomlist))

print("Numpy:   ", (np.mean(randomlist), np.var(randomlist, ddof=1)))

the results obtained are :
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Welford: (5008.9033999999965, 8355298.724940919)

Numpy: (5008.9034, 8355298.724940932)

Here the value of the variance is the same upto the 7th floating point.

These results show that the textbook one-pass algorithm for the calculation of variance

may be used in stream processing, but it is highly numerically unstable. On the other

hand, Welford’s algorithm is numerically stable, gives accurate results even in case of

floating points, and is a one pass algorithm, thus not requiring the data to be stored.

Conclusion:

The popular and standard methods of computing dispersion in unidimensional data

cannot be applied to data with higher dimensionality. A covariance matrix not just

provides the variability of one random variable throughout a dataset, but also gives the

variance between two random variables throughout the distribution. However, the size

of a covariance matrix is the square of the number of dimensions of the dataset, thus

causing problems for high dimensional datasets. Incremental calculation of mean and

variance by means of a one-pass algorithm, such as the Wellford’s online algorithm,

was seen to be ideal for data stream processing.
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